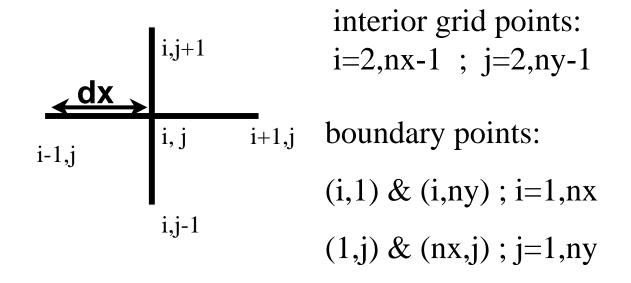
The Serial Stommel Model in FORTRAN

Luke Lonergan High Performance Technologies, Inc.


Prototype Model Overview

After this exercise, we will have a well understood prototype model implemented in FORTRAN In the last section we learned that the Stommel model is a linear partial differential equation with constant coefficients:

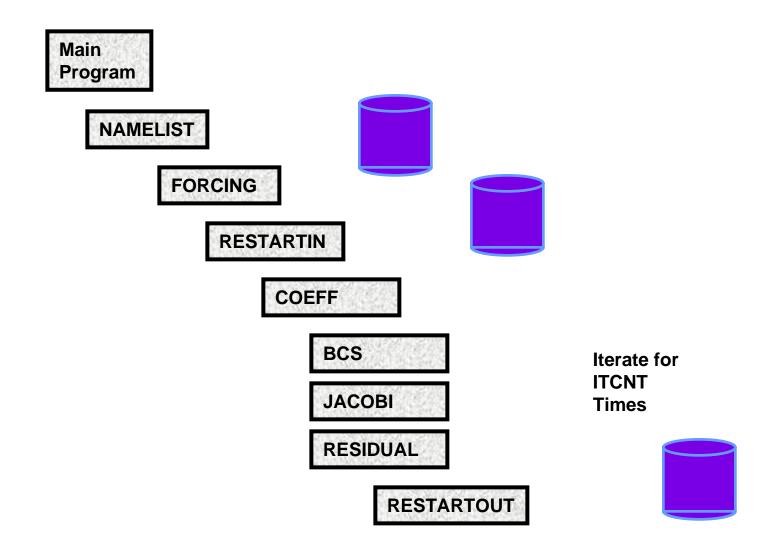
$$\gamma \nabla^2 \psi + \beta \frac{\partial \psi}{\partial x} = \alpha \sin \left(\frac{\pi y}{L_y} \right)$$

Discretization of the Equations

We also defined a computational grid of points in (x,y) and (i,j) coordinates:

Next step is to solve the equation approximately using Fixed Point Iteration

Iterative Scheme


The iterative equation is written:

$$\psi_{i,j}^{n+1} = a_1 \psi_{i+1,j}^n + a_2 \psi_{i-1,j}^n + a_3 \psi_{i,j+1}^n + a_4 \psi_{i,j-1}^n$$

$$-a_5 f_{i,j}$$

Where the (n) denotes the "old" value and (n+1) is the "new" value. Note that the forcing function doesn't change with each iteration, neither do the constants a_1 through a_5

Flowchart for the Serial Code

Develop the Basic Code Variables

Change directory to serial/step1

Edit the README file

Recommended Approach:

Review the finished code example in serial/step1/completed

Advanced:

Make any style changes and copy modified code to serial/step2

Duration: 5 Minutes

Develop the Basic Code Structure

Change directory to serial/step2

Edit the README file

Recommended Approach:

Review the finished code example in serial/step2/completed

Advanced:

Make any style changes and copy modified code to serial/step3

Duration: 5 Minutes

Develop A Runnable Code

Change directory to serial/step3
Edit the README file
Recommended Approach:

Review the finished code example in serial/step3/completed

Compile and link the code using

"make"

Execute the code, perhaps changing the dimensions and iteration count

Time the code using

"time executable_name"

Basic Profile of the Code

Change directory to serial/step4
Edit the README file
Recommended Approach:

Review the finished code example in serial/step4/completed
Compile and link the code using "make"

Execute the code and take note of the performance Time the separate parts of the program, noting the relative contributions

Runnable Code (Cont'd)

Advanced:

Make any style changes and copy modified code to serial/step4

Duration: 10 Minutes

Basic Profiling (Cont'd)

Advanced:

Make any style changes and copy modified code to serial/step5

Duration: 10 Minutes

Insertion of Basic Input/Ouput

Change directory to serial/step5
Edit the README file

Recommended Approach:

Review the finished code example in serial/step5/completed

Compile and link the code using

"make"

Execute the code and review the functionality of the I/O

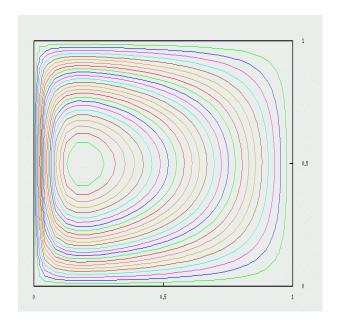
Experiment with restarting the code from the previous run

Basic I/O (Cont'd)

```
Example:

stommel.x

mv psi.out psi.in


stommel.x

(etc.)
```

Try plotting the resulting solution using the "plotter.x" program and GNUPlot

```
Example:
    plotter.x
    (enter the name of the solution file, e.g.
    "psi.out")
    (Follow the directions for GNUPlot)
```

Basic I/O (Cont'd)

Advanced:

Make any style changes and copy modified code to serial/step6

Duration: 15 Minutes

Measure Performance / Optimize

Change directory to serial/step6
Edit the README file
Recommended Approach:

Review the finished code example in serial/step6/completed
Compile and link the code using "make"

Execute the code and review the performance baseline. Write down the first number for Mflops you get and

Measure Performance / Optimize

try to improve it!

Note that there are a series of suggested approaches in the README file. In order to use the completed example code:
 edit the Makefile and replace main1.0 with main2.0 recompile (type "make") execute the program repeat with main2.0 replaced with main3.0 Advanced:

Try running on different systems!

Try running on different systems!

Duration: 15 Minutes